
A Comprehensive Framework for Reengineering
Method for Web services architectures

Venkatsampath Raja Gogineni1, Dr.Syed Umar2

1B.Tech Student, ECM dept., K L University, vaddeswaram, Guntur, AP.

2Assoc.Professor, ECM dept., K L University, Vaddeswaram, Guntur, AP

Abstract: The web services technology and service-oriented
architectures are quickly developing and extensively
supported. In particular through the Web services framework
have greatly enhanced the flexible and interoperable
implementation of service-oriented software architectures.
But, it is fairly difficult for existing web applications to expose
functionality as services in a service-oriented architecture,
because when web applications were built, they served as
monolithic systems. In this paper we describe an advanced e-
learning system as our case study, we consider central aspects
of a re-engineering approach for the Web services platform.
While our aim is to provide components of the legacy system
also as services in the new platform, re-engineering to suit the
new development paradigm is as important as re-engineering
to suit the new architectural requirements.

Keywords: Software Re-engineering, SOAP Web services,
Web Services Framework, web services.

INTRODUCTION
The World Wide Web is rapidly being adopted as the
medium of collaboration among organizations. Web
applications are today legacy systems, which constitute
valuable assets to the organizations that own them. A web
application is an application delivered to users from a web
server over networks such as the Internet or an intranet.
Web applications are popular due to the ubiquity of the web
browser as a client [1].
Performances aiming to develop the Web from a document-
to a services-centric environment are bundled in the Web
Services Framework WSF [2]. In the WSF philosophy it is
to open the Web for application-to-application use. It
provides a framework based on description languages to
describe services, a publication and discovery facility
acting as a marketplace for providers and users of services,
and protocols allowing services to be invoked in a
distributed environment.
Through the Web services technology becoming mature, it
will impact existing Web-based and other distributed
systems. Several software systems will be re-engineered for
the Web services platform in the future. Re-engineering
these systems as service-oriented architectures SOA will
become achievable.
We investigate central aspects of a re-engineering method
for the Web services platform, Web services framework
deployed as a service-oriented architecture poses new
architectural constraints on these systems [3]. But we found
that the new development style associated with the Web
services framework also influences the re-engineering
approach. Preparing an existing software component as a
service not only for later deployment in a service-oriented

architecture, but also as a software entity that can be made
available through the WSF description and discovery
mechanisms, is a central requirement that a re-engineering
method needs to embrace. We will use an e-learning system
as our case study here to illustrate our findings [4]. This
system is a Web-based, distributed system that is
characterised by complex interaction processes.
Case Study an E Learning System:
Nowadays, the Web is the predominant platform for
computer-supported teaching and learning. The latest
developments have seen more interactive media among the
Web resources, allowing interactions between human users
and provided services and also interactions between the
services themselves. We have been involved in the
development and extension of a Web-based teaching and
learning environment called IDLE [4] – the Interactive
Database Learning Environment.
The IDLE is a Web-based integrated learning and training
environment for an undergraduate course programme. This
system provides a wide range of educational features from
audio-supported lectures and animation-based tutorials to
active learning features for genuine database development.
Several of the components are audio server and audio
player, animation and simulation features, a graphical
modelling tool, an execution tool for a database language, a
workspace feature for student projects, a content repository,
a feedback feature, an evaluation tool, and a Web server
and other delivery software. The complexity and diversity
of the components requires architectural support in order to
develop, extend, and maintain the system. An explicit
interface between components has the past supported
extension and maintenance of the system [5].

Figure – 1: Learning Technology Standard Reference

Architecture (LTSA).

Venkatsampath Raja Gogineni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6032-6034

www.ijcsit.com 6032

The Learning Technology Standard Architecture LTSA has
been developed by the IEEE Learning Technology
Standards Committee LTSC in order to provide a
framework for the development, evaluation and discovery
of learning technology systems. It provides a basic
architecture consisting of process and storage components
and the interactions between them. LTSA identifies process
components such as coach, learner entity, evaluation, and
delivery, and storage components such as learning
resources or learner records as shown in Figure -1. The
objective is to enable sharing and reuse of learning
technology components [6].
The main objective here is to explore architectural aspects
of re-engineering – illustrated in the context of Web-based
teaching and learning environment (TLE) design and
development. Service-oriented architecture (SOA) shall
form the backbone of the re-engineered system. The notion
of learning objects is central in the case study context. It
comprises content units but also functional components
such as delivery or storage [7]. The context of educational
technology is a learning object in a self-contained learning
resource or function that is both a unit of retrieval and a
unit of assembly. In the software engineering context,
service notion is more appropriate, referring to an
encapsulated, reusable computational entity. Services are
similar to components in that their properties are described
in form of interfaces separated from the executable entities.
While composition is an issue here, we expect services to
have component character.
SOAP-Based Web Services
A web service is a technology commonly used to
implement SOAs. Service interfaces are defined in the
WSDL language, and service users and service providers
communicate using the SOAP protocol. Two attributes in a
WSDL interface, “style” and “use,” define the SOAP
communication between service users and providers. The
style attribute has two possible values: “RPC” and
“document.” The use attribute refers to data encoding and
has two possible values: “encoded” or “literal.”
Consequently there are four possible combinations of these
two attributes. Two combined options that are common in
practice are RPC-encoded and document-literal. They are
described next.
RPC-Encoded SOAP
In the RPC style, the SOAP message is equivalent to an
XML-based remote method call. The name and type of
each argument is part of the WSDL interface definition.
The body of the SOAP request necessarily contains an
element indicating the operation name and sub-elements
corresponding to the operation arguments. The encoded
attribute indicates that data is serialized using a standard
encoding format. This format is defined by the SOAP
specifications and contains rules to encode primitive data
types, strings, and arrays. Figure 2 represents an RPC-
encoded interaction. The RPC-encoded style was popular in
the first years of the Web services technology because of its
simple programming model and the similarity between
service operations and object methods. However, it is not a
good choice, because interoperability problems can arise

from deficiencies in the SOAP-encoding specifications
[Ewald 2002].
Document-Literal SOAP
The SOAP message body in a document-literal style
request can contain arbitrary XML (the business
document). The WSDL definition does not have to specify
named parameters, and the XML content of the message
body does not follow a standard structure as in the RPC
style. The literal attribute indicates that no standard
encoding format is used—data in the SOAP body is
formatted and interpreted using the rules specified in XML
schemas created by the service developer. The XML
schemas that define the data structure of the request and the
response are the key elements in the interface definition.
Figure 3 shows a document-literal interaction.

Figure -2. RPC-Encoded Interaction

Figure-3. Document-Literal Interaction

The document-literal approach is recommended by the WS-
I organization. In an architecture evaluation, the architect
should be aware of the differences between these styles.
Some Web services toolkits still use RPC-encoded as the
default style; therefore, it is important that developers know
how to specify the desired style when creating services [8].

Venkatsampath Raja Gogineni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6032-6034

www.ijcsit.com 6033

Figure 4: Proposed framework
(proposed framework consists of two major phases: web application reverse engineering and SWS forward engineering)

Web application reverse engineering phase:
Web application reverse engineering phase extracts a
model based abstract view of the considered web
application, starting from the available implementation.
The generated models are expressed according to the
proposed UML profile, and consider both static pages (pure
HTML with no server-side scripting) and dynamic pages
(including executable code at the server side). Reverse
engineering aims at recovering design models (Class and
Activity diagrams) from web applications code. The
resulting models cover static and dynamic aspects of the
application.
In our framework both class diagrams and activity
diagrams are stored by means of an XML serialisation. The
chosen variant for this task is XMI (XML Metadata
Interchange). The main purpose of XMI is to enable easy
interchange of metadata between modelling tools [9].

CONCLUSIONS AND FUTURE WORK
Reengineering is the process of analyzing a subject system
to identify the system components and their
interrelationships, and to create representations of the
system in an improved or a new form. The work we have
described in this paper focuses clearly on the latter goal.
The basic idea underlying our work is to reverse-
engineering the existing data driven web application to
create representations at a higher level of abstraction. We
have addressed units of software that have both service and
component character. They can be annotated with metadata
and discovered through searches based on this metadata.
These units are also units of composition in the
development of architectures for Web services-based
systems. The notion of learning objects has captured this

type of software unit in the case study context. Our
experience with the prototype service discovery and
reengineering system to date is by no means mature. We
have collected some initial evidence on how such a tool
might be deployed and our case studies suggest that the
approach is indeed promising. In the case study we
discussed in this paper, we were able to indeed discover
interesting

REFERENCES:
[1] Michiaki T. and Kenichi T., “Decomposition and Abstraction of Web

Applications for Web Service Extraction and Composition,” in
Proceedings of the 2006 IEEE International Conference on Web
Services (ICWS 2006), USA, pp. 859-868, 2006.

[2] World Wide Web Consortium. Web Services Framework.
http://www.w3.org/2002/ws, 2003.

[3] World Wide Web Consortium. Web Services Architecture Definition
Document. http://www.w3.org/2002/ws/arch, 2003.

[4] C. Pahl, R. Barrett, and C. Kenny. Supporting Active Database
Learning and Training through Interactive Multimedia. In Proc. Intl.
Conf. on Innovation and Technology in Computer Science Education
ITiCSE’04. ACM, 2004.

[5] C. Pahl. Managing evolution and change in web-based teaching and
learning environments. Computers and Education, 40(1):99–114,
2003.

[6] IEEE Learning Technology Standards Committee LTSC. IEEE
P1484.1/D8. Draft Standard for Learning Technology – Learning
Technology Systems Architecture LTSA. IEEE Computer Society,
2001.

[7] C. Szyperski. Component Software: Beyond Object-Oriented
Programming – 2nd Ed. Addison-Wesley, 2002.

[8] Ewald, Tim. The Argument against SOAP Encoding.
http://msdn2.microsoft. com/enus/library/ms995710.aspx (2002).

[9] Bouchiha, D. and Malki, M. (2012) ‘A framework for reengineering
web applications towards semantic web services’, Int. J. Web
Science, Vol. 1, No. 3, pp.180–203.

Venkatsampath Raja Gogineni et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (5) , 2014, 6032-6034

www.ijcsit.com 6034

